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TheoryDetails

• Beam: 3He from the 88” Cyclotron 
(42 MeV, >4 days)

• Target: 157Gd (99.2%, ~1.1 mg/cm2)

• Reactions: 157Gd(3He,3He’), (3He,α) 
as surrogates for 155,156Gd(n,x)

• Why?
Originally meant to be half of a future two-part surrogate
ratio experiment to determine the 153Gd(n,γ) cross section.
However, because gadolinium has well-studied neutron
cross section due to its use in control rods, it is a good
candidate for testing the absolute surrogate method.

Setup

Neutron cross sections on unstable nuclei are difficult, if not impossible to measure directly.  Indirect methods, such as the absolute surrogate
method, may therefore be used to determine neutron cross-sections using charged particle reactions on stable nuclei.  By measuring exit
channel probabilities on equivalent compound nuclei, combined with calculated neutron-induced compound nucleus formation cross sections
from optical models, (n,xnγ) cross sections can be determined.  This study is the first attempt using STARS-LiBerACE at LBNL’s 88-inch
Cyclotron to test the absolute surrogate method using gamma rays to determine (n,γ) and (n,2n) cross sections.
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For 157Gd(3He,α)156Gd:

199 keV (4+→2+): εp-γ= 0.49%

297 keV (6+→4+): εp-γ= 0.30%

380 keV (8+→6+): εp-γ= 0.09%

                   SUM: εp-γ= 0.88%
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“Desired” Reaction

Surrogate Reaction

σα
CN: formation cross sections calculated using optical models

Gχ
CN: branching ratios are very difficult to calculate and

results are strongly model-dependent

FδCN: theoretically determined direct reaction probabilities

Gχ
CN: these are the same branching ratios for the

“desired” reaction above

If branching ratios are Jπ independent:
(Weisskoff-Ewing limit)
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Alphas in coincidence with gammas

Uncorrelated alphas

Neutron Separation Energy
(Sn = 8.536 MeV)
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Gammas in Coincidence with 32-36 MeV Alphas
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Example Gamma Intensities

Particle Identification

Exit Channel Detection Efficiency

Alpha/Gamma Coincidences

At present, we have not been able to reproduce the known neutron cross sections of
ENDF evaluations or STAPRE calculations.  While the general low-energy shape of
the exit channel probability is correct, the absolute magnitude is high by a significant
factor.  Furthermore, we observed a low, but significant gamma-only emission intensity
at high excitation energies, where the (n,γ) cross section should drop to zero.  Results
for the (n,2n) cross section are similar, but are also affected by significant carbon and
oxygen target contamination for which we have yet to compensate.

It is unclear if these results reflect a failure of the absolute surrogate method, non-ideal
experimental conditions, or reactions from target impurities.  We are continuing to
scrutinize the results to identify the cause of the discrepancies.
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Data analysis involves several steps:
       Alpha particles are distinguished from
3He and other nuclei by plotting the energy
loss of charged particles in a telescoped
silicon detector and making “banana” gates.
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       Gammas in coincidence with alphas are
analyzed as a function of Gd excitation
energy.  We can then gate on discrete lines
corresponding to specific 154,155,156Gd nuclei
to select the reaction of interest.
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       Assuming gamma cascades from highly-excited nuclei proceed through low-level
transitions similarly, the probability of a (3He,αγ) reaction above the neutron separation
energy can be calculated as the ratio of the intensity of a low-level yrast gamma transition
(divided by the total number of alphas) to the intensity of the same transition immediately
below the separation energy (where the probability of decay by anything other than
gamma emission is zero).
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Excitation Energy

       Examples of yrast gamma ray intensities for the γ and 2n
exit channels are shown below.  Exit channel probabilities
can be multiplied by neutron-absorption entrance channel
cross sections (from optical models) to obtain 156Gd(n,γ) and
156Gd(n,2n) cross sections.
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Conclusions

• Based on 199keV line

• X-error bars reflect bin widths only

Gamma Exit Channel Probability
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